Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 73(18): 6226-6240, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35710302

RESUMO

Allelic variation in the CETS (CENTRORADIALIS, TERMINAL FLOWER 1, SELF PRUNING) gene family controls agronomically important traits in many crops. CETS genes encode phosphatidylethanolamine-binding proteins that have a central role in the timing of flowering as florigenic and anti-florigenic signals. The great expansion of CETS genes in many species suggests that the functions of this family go beyond flowering induction and repression. Here, we characterized the tomato SELF PRUNING 3C (SP3C) gene, and show that besides acting as a flowering repressor it also regulates seed germination and modulates root architecture. We show that loss of SP3C function in CRISPR/Cas9-generated mutant lines increases root length and reduces root side branching relative to the wild type. Higher SP3C expression in transgenic lines promotes the opposite effects in roots, represses seed germination, and also improves tolerance to water stress in seedlings. These discoveries provide new insights into the role of SP paralogs in agronomically relevant traits, and support future exploration of the involvement of CETS genes in abiotic stress responses.


Assuntos
Secas , Germinação , Germinação/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fosfatidiletanolaminas , Sementes/genética , Sementes/metabolismo
2.
Curr Opin Plant Biol ; 60: 102006, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33556879

RESUMO

Creating crops with resistance to drought, soil salinity and insect damage, that simultaneously have higher nutritional quality, is challenging to conventional breeding due to the complex and diffuse genetic basis of those traits. Recent advances in gene editing technology, such as base editors and prime-editing, coupled with a deeper understanding of the genetic basis of domestication delivered by the analysis of crop 'pangenomes', open the exciting prospect of creating novel crops via manipulation of domestication-related genes in wild species. A de novo domestication platform may allow rapid and precise conversion of crop wild relatives into crops, while retaining many of the valuable resilience and nutritional traits left behind during domestication and breeding. Using the Solanaceae family as case in point, we discuss how such a knowledge-driven pipeline could be exploited to contribute to food security over the coming decades.


Assuntos
Domesticação , Melhoramento Vegetal , Produtos Agrícolas/genética , Edição de Genes , Valor Nutritivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...